\qquad
\qquad

Graph a function that has... (Mark important points)
x-intercepts $\mathrm{x}=-1$ and $\mathrm{x}=4$

An axis of symmetry at $x=2$

a vertex at $(-3,2)$ and y intercept of $y=-3$

a vertex at $(-3,2)$ and y intercept of $y=10$

Graph the function. (Use a table and 5 points)

$f(x)=1 / 2 x^{2}$

$$
g(x)=-2 x^{2}+6
$$

$$
h(x)=3(x+5)^{2}-1
$$

\qquad
Period: \qquad
Match the graph with the function... explain your decision.

1. Here are 4 equations of quadratic functions and 4 sketches of the graphs of quadratic functions.
A. $y=x^{2}-6 x+8$
B. $y=(x-6)(x+8)$
C. $y=(x-6)^{2}+8$
D. $y=-(x+8)(x-6)$
2.

a. Match the equation to its graph and explain your decision.

Equation A matches Graph, because

Real World Situation

While playing basketball this weekend Frank shoots an air-ball. The height h in feet of the ball is given by $h(x)=-16(t-1)^{2}+24$ where t is time in seconds.
a) How long will it take the ball to hit
 the ground?
b) What is the maximum height of the ball?

c) What are the domain and range of the function?
d) How does the situation restrict the domain and range?
\qquad
\qquad
Find the vertex, x-intercepts, y-intercepts from standard form and vertex form, then convert it
$y=x^{2}-4 x+3$
Vertex \qquad is it a maximum or a minimum? \qquad
y-intercept \qquad x-intercepts \qquad

Rewrite the equation in vertex form (complete the square)
$y=x^{2}+8 x-20$
Vertex \qquad is it a maximum or a minimum? \qquad
y-intercept \qquad x-intercepts \qquad
Rewrite the equation in vertex form
(complete the square)
$y=(x-5)^{2}-4$
Vertex \qquad is it a maximum or a minimum?
y-intercept \qquad x-intercepts \qquad

Rewrite the equation in standard form
$y=(x+1)^{2}+16$
Vertex \qquad is it a maximum or a minimum?
y-intercept \qquad x-intercepts \qquad
Rewrite the equation in standard form

Name: \qquad

Telling/writing the function from the table... some extra examples and some practice

