In Exercises 3–8, graph the function. Compare the graph to the graph of $f(x) = x^2$.

3.
$$g(x) = 5x^2$$

5.
$$k(x) = -x^2$$

7.
$$n(x) = -\frac{1}{5}x^2$$

4.
$$m(x) = -4x^2$$

6.
$$l(x) = -7x^2$$

8.
$$p(x) = 0.6x^2$$

In Exercises 9 and 10, determine whether the statement is *always, sometimes,* or *never* true. Explain your reasoning.

- **9.** The graph of $g(x) = ax^2$ is wider than the graph of $f(x) = x^2$ when a > 0.
- **10.** The graph of $g(x) = ax^2$ is narrower than the graph of $f(x) = x^2$ when |a| < 1.

In Exercises 1–4, graph the function. Compare the graph to the graph of $f(x) = x^2$.

1.
$$g(x) = x^2 + 5$$

2.
$$m(x) = x^2 - 3$$

3.
$$n(x) = -3x^2 - 2$$

4.
$$q(x) = \frac{1}{2}x^2 - 4$$

Evaluate the expression when x = -4.

5.
$$2x^2 + 8$$

5.
$$2x^2 + 8$$
 6. $-x^2 + 3x - 4$ **7.** $-3x^2 - 4$ **8.** $5x^2 - x + 8$

7.
$$-3x^2 - 4$$

8.
$$5x^2 - x + 8$$

9.
$$4x^2 - 8x$$

10.
$$6x^2 - 5x + 3$$

9.
$$4x^2 - 8x$$
 10. $6x^2 - 5x + 3$ **11.** $-2x^2 + 4x + 4$ **12.** $3x^2 + 2x + 2$

12.
$$3x^2 + 2x + 2$$